Wednesday, May 22, 2019

Jawab-e-Shikwah of (Dr. Sir Mohammad Iqbal)









































Shikwah of (Dr. Sir Mohammad Iqbal)

































International Place Value System Vs Indian Place Value System

International Place Value System Vs Indian Place Value System.

*) International Place Value System :
   
1) Ones ( 1  _  9), 
2) Tens ( 10  _  99), 
3) Hundreds ( 100 _ 999), 
4) Thousands ( 1000 _ 9999),    
5) Ten Thousands ( 10,000  _  99,999),
6) Hundred Thousands( 100,000  _  999,999),      
7) Million ( 1,000,000  _  9,999,999),
8) Ten Millions ( 10,000,000 _  99,999,999),
9) Hundred Millions 
     ( 100,000,000 _ 999,999,999),
10) One Billion
       ( 1,000,000,000 _  9,999,999,999)

*) Indian Place Value System :

1) Ones (1 _ 9),
2) Tens (10 _ 99),
3) Hundreds (100 _ 999),
4) Thousands (1000 _ 9999),
5) Ten Thousands ( 10,000  _  99,999),
6) One Lac or Lakh ( 1,00,000  _  9,99,999),
7) Ten Lacs or Lakhs( 10,00,000  _  99,99,999),
8) One Crore ( 1,00,00,000  _   9,99,99,999),
9) Ten Crores ( 10,00,00,000  _  99,99,99,999),
10)One Arab ( 1,00,00,00,000  _  9,99,99,99,999)

Note:
(Differences between International Place Value System and Indian Place Value System):

1) by Comma using (,):

   e.g. 123456789   (How do we write this?)

   *) 123,456,789      (In International P.V.S)

   *) 12,34,56,789     (In Indian P.V.S.)

2) by Read and Write:

   e.g. 123456789

   *) 123,456,789
      (One hundred twenty three millions,four          hundred fifty six thousands seven                        hundreds eighty nine)   
      (International P.V.S)

   *) 12,34,56,789
      (12 Crores,thirty four lakhs, fifty six
       thousands seven hundred eighty nine
       (Indian P.V.S)

3) by Number Names :

*) Hundred Thousands = One Lakh
*) One Million = Ten Lakhs
*) Ten Millions = One Crore
*) Hundred Millions = Ten  Crores
*) One Billion = One Arab





Saturday, May 18, 2019

Laws of Arithmetic

Laws of Arithmetic

1) Commutative Law :

     *) For Addition : (Passes this law)
          a+b = b+a ; e.g. 3 + 4 = 4 + 3 = 7 
          The sum of two numbers is the same if                we change their order.

     *) For Subtraction : (Doesn't Pass this law)
          a-b ≠ b-a ; e.g. 3 - 4 ≠ 4 - 3 

     *) For Multiplication : (Passes this law)
          a.b= b.a ; e.g. 3 * 4 = 4 * 3 = 12
          The product of two numbers is the same            if we change their order.

     *) For Division : (Doesn't Pass this law)

2) Associative Law :

     *) For Addition : (Passes)
          a + (b +c) = (a + b) + c = (a + c) + b
          e.g. 2+(3+4) = (2+3)+4 = (2+4)+3 = 9
          The sum of three numbers remain the                same whichever way we group any two              of the three numbers.

     *) For Subtraction : (Doesn't Pass this law)
          a - (b - c) ≠ (a - b) - c ≠ (a - c) - b
          e.g. 2-(3-4) ≠ (2-3)-4 ≠ (2-4)-3

     *) For Multiplication : ( Passes)
          a * (b * c) = (a * b) * c = (a* c) * b
          e.g. 2*(3*4) = (2*3)*4 = (2*4)*3 = 24
          The product of the three numbers                        remain same whichever way we group                any two of the three numbers.

     *) For Division : (Doesn't Pass this law)
          a ÷ (b ÷ c) ≠ (a ÷ b) ÷ c ≠ (a ÷ c) ÷ b
          e.g. 2÷(3÷4) ≠ (2÷3)÷4 ≠ (2÷4)÷3
   

3) Properties of Zero :
      
    *) For Addition (Identity element) :                           (Passes)
         e.g. 4+0 = 4 = 0 + 4  
         When we add zero to a number or add a             number to zero, the sum is the number               itself.

    *) For Subtraction : (doesn't pass this                       property)
         e.g. 4 - 0 = 4 but 0 - 4 = - 4 ; (4 ≠ - 4)

     *) For Multiplication :  (Passes)
         e.g. 4 * 0 = 0 = 0 * 4 
         Any number multiplied by zero is always           zero.

     *) For Division : (doesn't Pass this property)
         e.g. 0 ÷ 4 = 0 but 4 ÷ 0 = ∞ ; (0 ≠ ∞)
         Zero divided by any number is always                 zero . but division by zero is not                             permissible.

4) Properties of 1:

     *) For Addition :    ( X )

     *) For Subtraction :  ( X )

     *) For Multiplication : (Identity element)
         e.g. 4 * 1 = 4 = 1 * 4 ( Passes this property)
         When 1 multiplies a number , the                         product is the number itself.

      *) For Division : (doesn't pass this                               property)
           e.g. 4 ÷ 1 =4 but 1 ÷ 4 = .25 ;  (4 ≠ .25)
           Note:
           A number divide by itself is always = 1
           e.g. 4 ÷ 4 = 1

5) Distributive Law : (Meaning Multiplication                                             distributes over)
           *) Addition : (Satisfies)
               e.g. a (b + c) = ab + ac
               2(3 + 4) = 2(7) = 14 ; 2*3 + 2*4 = 6 + 8 = 14
               L.H.S. = R.H.S.

           *) Subtraction : (Satisfies)
                e.g. a (b - c) = ab - ac
                2(3 - 4) = 2 (-1) = -2 ; 2*3 - 2*4 = 6 - 8 = -2
                L.H.S. = R.H.S.

          *) Multiplication : (Satisfies)
               e.g. a (b * c) = ab * ac
                       2(3 * 4) = 2 ( 12) = 24 ;
                       (2*3) * (2*4) = 6 * 8 = 24
                       L.H.S. = R.H.S.
          *) Division : ( doesn't Satisfy)
              e.g. a ( b ÷ c) = ab ÷ ac
                      2 ( 8 ÷ 4) = 2(2) = 4
                      (2*8) ÷ (2*4) = 16 ÷ 8 = 2
                      L.H.S. ≠ R.H.S.


Featured post

Comparison Among Islam , Judaism And Christianity

Islam , Judaism And Christianity *) Islam: Title of Followers : Muslims Origin : Arabia (622 CE) ( Fully Implemented) otherwise fro...